Module 01 :    Getting Started with Power BI
▼
- 1. Introduction to Business Intelligence
- 2. Understanding Data and Its Importance
- 3. Why do we need a Business Intelligence Tool?
- 4. Self-Service Business Intelligence (SSBI)
- 5. Introduction to Power BI
- 6. Features of Power BI
- 7. Traditional BI vs. Power BI
- 8. Architecture of Power BI
- 9. How Power BI Works - The Workflow
- 10.Core Components of Power BI
- 11.Power BI Version Comparison
- 12.Real-World Use Cases of Power B
Module 02 :    Data Preparation and Transformation with Power BI Desktop
▼
- 1. Connecting to Various Data Sources
- 2. Import vs. DirectQuery Modes
- 3. Data Loading and Source Settings
- 4. Normali
- 5. Views in Power BI Desktop
- 6. Introduction to Power Query Editor
- 7. Data Profiling in Query Editor
- 8. Transforming, Cleaning, and Shaping Data
- 9. Data Modeling Fundamentals
- 10.Introduction to Semantic Model
- 11.Star vs. Snowflake Schema Design
- 12.Exploring Data Relationships
- 13.Cardinality and cross-filter Direction
- 14.Creating and Using Parameters
- 15.Model Optimization
Module 03 :    Data Analysis Expression (DAX)
▼
- 1. Introduction to Data Analysis Expression
- 2. Role of DAX in Power BI and Data Modeling
- 3. Understanding DAX Syntax and Structure
- 4. Data Types in DAX
- 5. Calculation Types in DAX: Calculated Columns, Measures, and Tables
- 6. Introduction to Measures
- 7. DAX Functions
- 8. Understanding and Using DAX Operators
- 9. Working with DAX Tables and Applying Filters
- 10.DAX Performance Optimization
- 11.Best Practices for DAX Performance Optimization
Module 04 :    Designing Impactful Data Visualizations
▼
- 1. Introduction to Visuals in Power BI
- 2. Types of Visualizations
- 3. Using Shapes, Text Boxes, and Images
- 4. Conditional Formatting in Visuals
- 5. Z-order, Layering, Grouping, and Binning
- 6. Bookmarks, tooltips, and drillthrough
- 7. Page Layout and Formatting
- 8. Field Parameters for Dynamic Visuals
- 9. Custom Visuals from Appsource
Module 05 :    Leveraging Power BI Service for Scalable Insights
▼
- 1. Introduction to Power BI Service
- 2. Power BI Service vs Power BI Desktop
- 3. Exploring Power BI Service Interface
- 4. Introduction to Workspaces
- 5. Publishing Reports to Power BI Service
- 6. Creating a Dashboard
- 7. Quick Insights and Analyze Features in Power BI
- 8. Working with Power BI Q&A Feature
- 9. Monitoring Usage Metrics and Report Performance
- 10. Deployment Pipelines
- 11. Power BI Lineage
- 12. Protecting Data using Sensitivity Labels
- 13. Introduction to Metrics Hub and Scorecards
- 14. Power BI Embedded
- 15. Power BI Mobile App Features and Development
Module 06 :    Data Connectivity Modes in Power BI
▼
- 1. Exploring Data Connections
- 2. Connecting to Cloud Databases
- 3. SQL Server Analysis Services / MySQL
- 4. Connecting Power BI with Microsoft Dataverse
- 5. Understanding Security Roles and Permissions in Dataverse
- 6. Working with Dataflows in Power BI Service
- 7. Integrating Cognitive Services with Power BI
- 8. Importing Power View and Power Pivot
- 9. Introduction to Data Gateways
- 10.Data Gateways Workflow
- 11.Introduction to OneLake and the Fabric Ecosystem
- 12.Discovering and Reusing Datasets from OneLake Data Catalog
- 13.Governance and Lineage in OneLake
Module 07 :    Integrating R and Python in Power BI
▼
- 1. Overview of R and Python Languages in BI
- 2. Setting Up R/Python Environments
- 3. Data Ingestion with R and Python Scripts
- 4. Using scripts for Data Transformation
- 5. Custom Visualizations with R and Python
- 6. Predictive Analytics with R/Python
- 7. Azure ML Integration via Python
- 8. Use cases and Best Practices for Integration
Module 08 :    Power BI Report Server
▼
- 1. What is Power BI Report Server?
- 2. Key Features of Report Server
- 3. Report Server Architecture
- 4. Power BI Report Server vs. Power BI Service
- 5. Acquiring and Installing Power BI Report Server
- 6. What is a Web Portal?
- 7. Working with Paginated Reports
- 8. Scheduled Data Refresh via Gateway
- 9. Implementing and Managing Row-Level Security (RLS)
- 10.Limitations of Report Server
- 11.Use Cases for Power BI Report Server in Enterprise Environments
Module 09 :    Developing Sales Dashboard
▼
- 1. Data Loading from External Sources
- 2. Data Transformation using Power Query Editor
- 3. Data Modeling and Relationships
- 4. Data Analysis with DAX
- 5. Designing AI-Powered Visuals
- 6. Workspace Management
- 7. Row-Level Security (RLS) Implementation
- 8. Publishing Reports on Power BI Service
Module 10 :    PL 300 Certification Preparation
▼
- 1. Overview of PL-300 Exam Outline
- 2. Key Objectives Breakdown
- 3. Real-World Case Studies
- 4. Sample Question Discussion
- 5. Time Management Tips
- 6. Common Pitfalls to Avoid in the Exam
PDF
DOWNLOAD FULL SYLLABUS